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Abstract

Self-tuning PID controller with genetic algorithm (GA) was applied to the temperature control of a jacketed batch polymerization reactor and
thus tracking performance of optimal temperature profile was investigated. To obtain optimal tuning parameters of this controller, genetic algorithm
was used. The fitness function for GA was taken as the integral of the absolute value of the error (IAE). By using tuning parameters three different
optimal temperature trajectories were obtained, the efficiency and the performance of the self-tuning PID controller with GA was examined by
simulation and experimentally. It was observed that the control experiments were successfully conducted on tracking the optimal trajectories which
would yield polymer product with desired properties. Simulation results also show that self-tuning PID control with GA give very satisfactory

results.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Batch process in manufacturing of chemicals, pharmaceuti-
cal, polymers have occupied an important position in chemical
industry. Batch polymerization reactions have complex mech-
anism, strong inherent, and nonlinearities. For this reason, the
control of such polymerization reactors could be a challenging
task in order to reach the desired polymer quality. Up to now,
variety of control methods has been applied on chemical and
polymerization reactors. Self-tuning control is a control scheme
in which controller parameters are determined according to the
dynamic behaviour and desired response of the process. The
determination of these parameters is very important as it effects

Abbreviations: ARMA, autoregressive moving average; BPO, benzoylper-
oxide; Ga, genetic algorithm; HJ, Hooke and Jeeves; IAE, the integral of the
absolute value of the error; PID, proportional-integral-derivative; STPID, self-
tuning PID; ZN, Ziegler-Nichols.
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the control performance. Genetic algorithms are able to identify
these parameters. GA is a different optimization method based
on the mechanics of the natural genetics and natural selection
[1]. It is used for nonlinear complex optimization problems.
Wang and Kwok [2] used genetic algorithm for the optimization
of the parameters of classical PID controllers for nonlinear pro-
cesses. They compared GA with other optimization methods by
giving the concept of GA and working principles. They showed
that the GA could produce the smallest performance index, in
comparison to the ZN and HJ methods during the same obser-
vation period. Machado and Bolzan [3] studied the control of
batch suspension polymerization reactor in a pilot unit. In their
study, initiator concentration and temperature were determined
to produce the polymer within the desired characteristics, and
a methodology was implemented to control the operation of a
batch polymerization reactor by means of a self-tuning adaptive
controller. Friedrich and Perne [4] showed that advanced con-
trol methods like adaptive control, self-tuning control, fuzzy and
neural network controls would perform better than conventional
PID control. Furthermore the desired product with minimum
cost of operation and with maximum yield could be obtained by
the precise control of operational conditions in chemical indus-
try. Alunten et al. [5] have applied fuzzy control method with
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Nomenclature

A heat transfer area of the reactor (m?)

Aq, Ap, Ay frequency factor for initiator decomposition,
propagation and termination, respectively (s~,
L/mols, L/mol s)

Cp, Cpe specific heats for the reactor content and coolant,
respectively (kJ/kg K)

e(t) error signal

Eq, E,, E; activation energies for initiator decomposi-
tion, propagation and termination, respectively

(kJ/mol K)

f initiator efficiency

—AH heat of the reaction (kJ/kmol)

IS initiator concentration, initial initiator concentra-
tion (mol/L)

kq initiator decomposition rate constant,
2.6 x 10" exp(—143.093/RT) (s~ 1)

kp propagation rate constant,
1.051 x 107 exp(—29.539/RT) (L/mol s)

ke termination rate constant,
1.255 x 10° exp(—7.029/RT) (L/mol s)

kic termination by combination rate constant
(L/mols)

K. proportional gain

Tl coolant flow rate (kg/s)

M, M, monomer concentration, initial monomer concen-
tration (mol/L)

Mg desired number-average molecular weight

(0] heat given from the electrical heater (kW)

™ reaction rate (mol/L s)

r(t) set point

t, tf time, polymerization time (s)

T reactor temperature (°C)

T., T., T., average, inlet and outlet coolant temperature
°O)

AT sampling interval

u(t) controller output

U overall heat transfer coefficient (W/m2K)

v kic/kt, constant

V, V.  reactor volume, jacket volume (m?>)

X4 desired monomer conversion

(1) process output

Greek letters

Wy viscosity of the reacting mixture (cp)

Ko zeroth moment of dead polymer distribution
Ve coolant flow rate (mL/s)

P density of the reactor content (kg/m>)

Pe coolant density (kg/m>)

Td derivative time

71 integral time

genetic algorithm to a polymerization reactor at a constant set
point. They also examined the performance of fuzzy controller
with GA in terms of its efficiency in tracking the temperature
path [6]. Hapoglu et al. [7] applied generalised minimum vari-
ance (GMYV) control with genetic algorithm to a tubular flow
reactor. The genetic algorithm was found very effective in deter-
mining optimal solutions to calculate model parameters. Chang
et al. [8] proposed a self-tuning method for a class of nonlinear
PID control systems based on Lyapunov approach. Erdogan et
al. [9] studied the optimal temperature control of batch jacketed
free radical polymerization reactor with STPID control method.
They used Bierman algorithm, and the control parameters were
recursively identified.

In the present work, in order to find the controller parameters
of self-tuning controller, a control system for a batch styrene
polymerization reactor was constructed by applying genetic
algorithm. The controller performance was tested by simula-
tion and then corroborated by experiments. Optimal conditions
for batch polymerization reactors were calculated to reach a
desired molecular weight and conversion in minimum time by
using a computer program developed for this system. The per-
formance of self-tuning controller was examined in terms of its
efficiency and duration in tracking the optimal temperature, con-
version and the molecular weight changes. The results from the
experiments were compared with desired and theoretical val-
ues obtained from the optimization of model equations of the
polymerization reactor.

2. Optimization and reactor model
2.1. Mass balance equations

For the optimization of the batch solution polymerization
process of styrene using benzoylperoxide (BPO) as the initiator,
the following differential equations describe the dynamics of the
reactor [10]:

Initiator:
d(v)
— = —kqlV 1
0 d (1)
Monomer:
d(Mv 2 fka\ 1/
M = (dt ) _ —kp< fkd) MI'2V = —jgMI'?V (2)
t
Zeroth moment of the dead polymer chains:
d(uoV
dwoV) _ 54 (1 - 3) kalV = kakalV 3)
dr 2
where
2fka) "2 —E
ki =k =A — 4
1 p( ke ) 1exp | —r 4)
v
k4=2f(1—§) )
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In these equations, constant density and volume, ideal mixing,
quasi-steady state were assumed.

2.2. Optimization of reactor temperature trajectory

Although the molecular weight distribution of the polymer is
the most important element to the properties of the product, the
reaction temperature is controlled to produce a polymer which
has desired properties. Temperature influences the monomer
conversion and the molecular weight.

In this work, the Hamiltonian maximum principle [11] was
applied to calculate the optimal temperature trajectory to reach
desired properties in minimum time. The equation obtained for
optimal temperature is given below:

(=E1/R)

= I[Eq/(A\CTV2(E| — Eg))] ©
where
Ay =@ N Paaar'? @)
I ®)
2 2

2.3. Energy balance equations

The energy balances for reactor and jacket can be written as
follows:

iT ~ Q@ | (—AH)ym UA(T -To)

i 9
dr VoCp oCp VoCp ©)

cho _ mc(Tci - Tco) UA(T - Tc) (10)
dr Ve e Ve pe Cpe

For the derivation of these equations, ideal mixing, constant inlet
cooling water temperature, consumption of the monomer only
in the propagation state were assumed.

As the monomer conversion increases, the viscosity increases
excessively. Therefore, it is important to predict the overall heat
transfer coefficient as a function of viscosity of the reacting
mixture as

1

U= ———
uO3BS + F

(11)
where S and F are constant which depend on the reactor size and
physical properties.

3. Design of self-tuning PID control using genetic
algorithm

The self-tuning PID controller with GA was depicted for
the temperature control of the polymerization reactor. The per-
formance of self-tuning PID control depends on its design
parameters. In this study, genetic algorithm is utilized to find
these parameters. The main basic idea in self-tuning control is
to fix the controller structure by defining system dynamic and
to tune to controller parameters according to the defined and
desired responses of the process. Self-tuning systems generally

Application Mechanism

Design ==y
Criieria' Control System | Modelling |
synthesis < lidentificationf——

Application l N/

Controller

u(t)f)_. Process —C vt

Measurement
Element

Fig. 1. Block diagram of self-tuning PID controller.

are microprocessor based systems and discrete-time modeling
is convenient. The model structure is explained according to the
polynomial order of the model parameters. The diagram of a
self-tuning PID control system is shown in Fig. 1. Self-tuning
strategy here is implemented in a feedback manner. Three sets
of computations are employed: system identification, control
synthesis and implementation of the settings in a feedback loop.
The control equation is given as follows

u(r) = %[r(t) — ()] 12)
Here r(¢) represents the set point, and:
S:so+slz_l+szz_l; R=1-z"! (13)
The system ARMA model is given as

boz ™!

1 +aiz7' +axz2

B
¥ = u(t) = Zu(t -1 (14)

Transfer function of a self-tuning PID controller can be written
by replacing Eq. (12) into Eq. (14) as follows
b()Z_l[S() + S]Z_l + 522_2]
A=z H+aiz +az7?)
+boz " N(so + 51271 + 5227%)

B _BS |
¥ = r(r) = TF(I -1

s)

The closed-loop T polynomial can be given in the form of

T=1+nz"'4n?+n">

=l —zH0+aiz " +az?
+boz L(so + 5127 +52272) (16)

where t1, 17, 13, a1, ap and by are the tuning parameters of STPID
controller.

Self-tuning PID control algorithm may be summarized as
follows

1. The coefficients of polynomials are calculated from the fol-
lowing equations according to the tuning parameters as

_tl—a1+l

by a7

S0
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l’ J—
5] = n-a+tl (18)
by
5y = Bta (19)
bo

2. The STPID control parameters are found from the values of
50, 51 and s> as

S0 — 851 — 352

Ke= 002 (20)
K —s51—3 2

o Ke_ (s0 — 51 —3s2)/ 21
Ky (so+s1+s2)/AT
K AT

T4 = Ba 54T (22)

Ko (so—s1—352)/2

3. The incremental control signal Au, is calculated from the
following equation

AT Td
Aupy =K [ 1+ —+ — e

211 AT
o = + K
——1—— e —en—
c 2‘[1 AT n—1 CAT n—2

(23)

4. The calculated output value is compared with the set point
and thus an error is found.
5. Itis returned to step 3.

In this study, genetic algorithm is used to select four of the
tuning parameters as aj, az, bg and #1. Then the algorithm of
self-tuning control is implemented according to these tuning
parameters. Next, the integral of the absolute value of the error
(TAE) using these chosen parameter values is calculated and
tuning parameters with the least error are used to control the
polymerization reactor. Thus, controller parameters are tuned in
such a way that the error is minimum.

4. Experimental system

Polymerization experiments were carried out in a cylindri-
cal jacketed glass reactor of 1.1 L equipped with an impeller
and electrical heater which was connected to a thyristor. In the
jacket, tap water was used as a coolant. The dissolved oxygen
was purged by bubbling pure nitrogen gas by means of the reac-
tion mixture. The reactor was also equipped with a computer
data acquisition and temperature control system. Fig. 2 shows
the schematic of reactor set-up. Toluene, benzoylperoxide and
styrene were used as solvent, initiator and monomer, respec-
tively. After the monomer and the solvent were charged into
the reactor, it was heated to the desired starting temperature
then initiator BPO was added to start the polymerization. The
temperature control of the reactor was carried out by using the
STPID controller.

The reaction mixture was sampled at successive times. The
samples were precipitated in methanol. Then, the precipitate
was filtered, dried in vacuum and weighed and the monomer
conversion was calculated.

1
=

REACTOR

Pumy
Cooling N
water

Fig. 2. Schematic diagram of the polymerization reactor control system.

5. Results and discussion

This work provides theoretical and as well as experimen-
tal study. A set of computer programs have been written to
implement STPID algorithm. For the experimental studies, the
VisiDAQ program developed for data acquisition and control
purposes is used. In the theoretical work a computer program
written in Fortran 90 is used.

In order to accomplish temperature control of the polymeriza-
tion reactor by way of control parameters of STPID controller,
genetic algorithm is used. GA is an optimization method based
on the mechanics of natural genetics and natural selection. In
this work, GA is used to select the tuning parameters (1, a1,
ay, bo) of the control system. The fitness of all individuals in
the population is evaluated according to the IAE criteria. The
parameters with the least error are implemented to the control
system.

5.1. Influence of the genetic parameters

Genetic operators: population size (N), crossover probability
(pc), mutation probability (pp,) and maximum number of genera-
tions (M) were investigated before the determination of STPID
control tuning parameters. The best values of these operators
were chosen among the generations after a number of executions
with different values of parameters [12].

5.1.1. Population size (N)

It shows the number of strings used in GA. To find the
best population size, the program was evaluated for different
population size values as 10-20-30-40-50 and 75. Finally, the
best population size was taken as the value which gives mini-
mum IAE at the end of maximum generation number (M, = 30).
The values of the parameters for this investigation are listed in
Table 1. Here, the maximum generation number was fixed as 30.
Figs. 3 and 4 show that the best population size is 40 at which
IAE is minimum and the time to reach 6, 28 and 29 generations
is minimum.
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Fig. 5. The result of IAE (fitness) obtained for different crossover probability.

Table 1
Parameters used in the analysis of the influence of population size
Cases pe (%) Pm (%) Population size
Curve 1 60 7 10-20-30-40-50-75
Curve 2 75 3 10-20-30-40-50-75
Curve 3 85 1 10-20-30-40-50-75
42
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Fig. 3. The result of IAE (fitness) obtained for different population size.
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Fig. 4. The best number of generation obtained for different population size.

5.1.2. Crossover probability (p¢)

After population size is performed, crossover takes place.
The computer program was run at different crossover probability
values. Table 2 presents the parameters used in the analysis of the
influence of the crossover probabilities. The fitness (IAE) and
the number of generations obtained for these cases are shown in
Figs. 5 and 6. The best result occurs with crossover probability
of 0.6.
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Fig. 6. The best number of generation obtained for different crossover proba-
bility.

5.1.3. Mutation probability (p,,)

Several tests with different mutation probability values
(Table 3) allow to conclude that pr, =0.07 is the best value. IAE
values are given in Fig. 7 and number of generation is given in
Fig. 8.

As a result, the optimum GA parameter values have been
obtained for this control system as N=40, p.=60% and
Ppm=7%. The same evaluation is performed with maximum
number of generation of 50 and the same results are obtained.
Maximum number of generation of 30 was chosen because of
lower computational time.

5.2. Experimental work
For validation of the control strategy, the determined opti-

mal operational conditions (Table 4) were implemented in
the experimental system. Table 5 shows the steady-state

Table 2 Table 3

Parameters used in the analysis of the influence of the crossover probabilities Parameters used in the analysis of the influence of the mutation probabilities
Cases Population size Pm (%) Pe (%) Cases Population size Pe (%) Pm (%)
Curve 1 40 4 60-65-70-75-80-85-95 Curve 1 40 60 1-3-4-5-6-7-8
Curve 2 40 5 60-65-70-75-80-85-95 Curve 2 40 75 1-3-4-5-6-7-8
Curve 3 40 7 60-65-70-75-80-85-95 Curve 3 40 85 1-3-4-5-6-7-8
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conditions in polymerization control experiments (heater resis-
tance = 106 Q2).

The best STPID tuning parameters were determined by the
use of control parameters of GA (N=40, p. =60%, pm=7%
and M, =30). The model parameters of the system calculated
for three different optimal temperature trajectories are given in
Table 6.

Then, STPID control algorithm was implemented in the
experimental system to observe its efficiency. The experimental
STPID control results in tracking the optimal temperature profile
for three different initial initiator concentrations (I, =0.0125,

Table 6
Tuning parameter value obtained by using GA for three different temperature
paths

Run 1 a az bo
1 —0.288235306 —0.038416423 0.251275655 0.000730132
2 —0.288235306 —0.040371457 0.247303026 0.000734968
3 —0.297647071 —0.048973608 0.252020523 0.000700630
120
Experimental =
1,=0.0125 mol/L
1159 | —set Point
O 1101
Y
5 1051 1,=0.0150 mol/L
o
2 100
1S
2 95
- Mom
85

0 2000 4000 6000 8000 10000 12000 14000

Time (s)

Fig.9. STPID control results in tracking the optimal temperature profile for three
different initial initiator concentrations (I, =0.0125, 0.0150, 0.0185 mol/L).

0.0150, 0.0185 mol/L) are presented in Fig. 9. Examining the
profiles, it is seen that experimental profile is close to the set
point path with small fluctuations for /, =0.0125 mol/L. There
is a deviation (offset) from the set point in tracking the set point
trajectory for I, =0.0150 mol/L. The deviation is 0.4-0.7 °C and
it is mainly due to the abrupt change in the temperature trajec-
tory at the initial part of the reaction. Later, controller shows
good performance and it tracks the set point path well. A very
good tracking of set point temperature path is observed for
1,=0.0185mol/L. The maximum deviation in temperature is
only 0.3-0.5°C.

Figs. 1012 show the time variation of manipulated variable
(H) that was implemented by the control system. Heat (H) was
manipulated in an oscillatory manner in all cases. As it is seen
in Fig. 10, the manipulated variable (H) oscillates very widely
after the point at which the profile is being ramped up. The

Table 4

The operating conditions

Run M, (mol/L) Xy (%) Mg (g/mol) I, (mol/L) TR first (°C) te (s)

1 6.092 50 52,000 0.0125 97.1 7,620
2 6.092 50 52,000 0.0150 92.7 10,200
3 6.092 50 52,000 0.0185 89.0 12,720
Table 5

The steady-state conditions (experimental and theoretical)

Run Treactor (°C) Tei (°C) Teo (°C) Ve (mL/s) H (experimental) Q(W) (theoretical)
1 97.1 21 79.8 0.5 80 165.11

2 92.7 21 76 0.5 75 156.75

3 89 21 73.3 0.5 70 148.40
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Fig. 10. Time variations of manipulated variable for the profile obtained at
1,=0.0125 mol/L.
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Fig. 11. Time variations of manipulated variable for the profile obtained at
I, =0.0150 mol/L.

variation of H is almost the same and less aggressive in other
runs. The control system is too sensitive to load disturbances that
sampling from the reactor may cause the variations in reactor
temperature and as a result the manipulated variable (H) acts
more aggressively during the sampling. The sensitivity of the
system may decrease in larger reactors.

The experimental conversion and average molecular weight
values were measured by sampling successively during
the experiment. The predicted and experimental results for
monomer conversion at I, =0.0125 mol/L are given in Fig. 13.
At the end of this experiment conversion value is 58% and
the number of average molecular weight reaches its target
value at 52,063 g/mol. The desired conversion values were

0 2000 4000 6000 8000 10000 12000 14000

Time (s)

Fig. 12. Time variations of manipulated variable for the profile obtained at
1,=0.0185 mol/L.
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0 20 40 60 80 100 120 140
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Fig. 13. Experimental and theoretical monomer conversions for the profile
obtained at I, =0.0125 mol/L.

Table 7

Comparison between the measured values of M, (g/mol)

1, (mol/L) 0.0125 0.0150 0.0185
Control free [9] 21,000 13,900 11,800
PID [9] 36,900 48,300 46,200
STPID with GA 52,063 55,720 44,690
Desired 50,000 50,000 50,000
Error for STPID with GA 0.04126 0.1144 0.1162

achieved during the first 75 min. In the latter part, the mea-
sured values were higher than those predicted. This discrepancy
may be due to the imperfect mixing of the reaction mix-
ture and nonhomogenity as a result of significantly increased
viscosity. At the end, the measured conversion is 64% and
measured number of average molecular weight is 55,720 g/mol
for 1, =0.0150 mol/L. The experimental monomer conversion
(69.4%) is higher than expected (50%), although the number
of average molecular weight (44,690 g/mol) approaches its tar-
get value (50,000 g/mol) for 7, =0.0185 mol/L. This error may
be considered reasonable if one takes into account the analyt-
ical measurement precision. The deviations in the monomer
conversions may be due to model uncertainties and unknown
disturbances like the variation of heat transfer coefficient with
time, solvent evaporation, volume change, and the variation of
the effectiveness factor of initiator with composition. In model-
ing, the volume and the effectiveness factor of the initiator were
taken as constant.

These experimental results mark that the best control is
obtained in the first case (I, =0.0125 mol/L). Here the polymer
product with desired properties is obtained in minimum time by
operating the batch reactor at optimal operating conditions under
STPID control with GA. Comparison between measured values
of M, at different optimal operating conditions under different
controllers are given in Table 7.

6. Conclusion
The polymerization reactor used for styrene production has

been successfully operated under the control of self-tuning with
GA. Controller performance was studied under different opti-
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mal reactor temperature trajectories. Based on the experimental
results it is concluded that self-tuning control with GA per-
forms very well at tracking the optimal temperature trajectory
determined by the off-line optimization of control parameters.
Self-tuning control with GA presented in this article can be
extended to semi-batch and continuous polymerization systems
and can be used with modifications to control the optimal tem-
perature of an industrial polymerization reactor. This work can
provide a good basis to control and operate industrial polymer-
ization reactor.
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